arXiv Analytics

Sign in

arXiv:2409.08213 [math.NT]AbstractReferencesReviewsResources

On determinants involving $(\frac{j+k}p)\pm(\frac{j-k}p)$

Deyi Chen, Zhi-Wei Sun

Published 2024-09-12Version 1

Let $p=2n+1$ be an odd prime. In this paper, we mainly evaluate determinants involving $(\frac {j+k}p)\pm(\frac{j-k}p)$, where $(\frac{\cdot}p)$ denotes the Legendre symbol. When $p\equiv1\pmod4$, we determine the characteristic polynomials of the matrices $$\left[\left(\frac{j+k}p\right)+\left(\frac{j-k}p\right)\right]_{1\le j,k\le n}\ \ \text{and}\ \ \left[\left(\frac{j+k}p\right)-\left(\frac{j-k}p\right)\right]_{1\le j,k\le n},$$ and also prove that \begin{align*} &\ \left|x+\left(\frac{j+k}p\right)+\left(\frac{j-k}p\right)+\left(\frac jp\right)y+\left(\frac kp\right)z+\left(\frac{jk}p\right)w\right|_{1\le j,k\le n} \\=&\ (-p)^{(p-5)/4}\left(\left(\frac{p-1}2\right)^2wx-\left(\frac{p-1}2y-1\right)\left(\frac{p-1}2z-1\right)\right), \end{align*} which was previously conjectured by the second author.

Comments: 9 pages
Categories: math.NT
Subjects: 11A15, 11C20, 15A15, 15A18
Related articles: Most relevant | Search more
arXiv:2210.14741 [math.NT] (Published 2022-10-26)
Legendre symbols related to certain determinants
arXiv:2408.07034 [math.NT] (Published 2024-08-13)
On a determinant involving linear combinations of Legendre symbols
arXiv:2405.03626 [math.NT] (Published 2024-05-06)
Problems and results on determinants involving Legendre symbols