{ "id": "2409.08213", "version": "v1", "published": "2024-09-12T16:53:53.000Z", "updated": "2024-09-12T16:53:53.000Z", "title": "On determinants involving $(\\frac{j+k}p)\\pm(\\frac{j-k}p)$", "authors": [ "Deyi Chen", "Zhi-Wei Sun" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "Let $p=2n+1$ be an odd prime. In this paper, we mainly evaluate determinants involving $(\\frac {j+k}p)\\pm(\\frac{j-k}p)$, where $(\\frac{\\cdot}p)$ denotes the Legendre symbol. When $p\\equiv1\\pmod4$, we determine the characteristic polynomials of the matrices $$\\left[\\left(\\frac{j+k}p\\right)+\\left(\\frac{j-k}p\\right)\\right]_{1\\le j,k\\le n}\\ \\ \\text{and}\\ \\ \\left[\\left(\\frac{j+k}p\\right)-\\left(\\frac{j-k}p\\right)\\right]_{1\\le j,k\\le n},$$ and also prove that \\begin{align*} &\\ \\left|x+\\left(\\frac{j+k}p\\right)+\\left(\\frac{j-k}p\\right)+\\left(\\frac jp\\right)y+\\left(\\frac kp\\right)z+\\left(\\frac{jk}p\\right)w\\right|_{1\\le j,k\\le n} \\\\=&\\ (-p)^{(p-5)/4}\\left(\\left(\\frac{p-1}2\\right)^2wx-\\left(\\frac{p-1}2y-1\\right)\\left(\\frac{p-1}2z-1\\right)\\right), \\end{align*} which was previously conjectured by the second author.", "revisions": [ { "version": "v1", "updated": "2024-09-12T16:53:53.000Z" } ], "analyses": { "subjects": [ "11A15", "11C20", "15A15", "15A18" ], "keywords": [ "legendre symbol", "odd prime", "second author", "characteristic polynomials" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }