arXiv Analytics

Sign in

arXiv:2408.07034 [math.NT]AbstractReferencesReviewsResources

On a determinant involving linear combinations of Legendre symbols

Keqin Liu, Zhi-Wei Sun, Li-Yuan Wang

Published 2024-08-13Version 1

In this paper, we study a conjecture of the second author on determinants involving Legendre symbols. For example, we prove that for any prime $p\equiv3\pmod4$, where $(\frac{\cdot}p)$ is the Legendre symbol: $$\det\left[x+\left(\frac{i-j}p\right)+\left(\frac ip\right)y+\left(\frac jp\right)z+\left(\frac{ij}p\right)w\right]_{0\le i,j\le(p-3)/2}=x$$

Comments: 16 pages
Categories: math.NT
Subjects: 11A15, 11C20, 15A15
Related articles: Most relevant | Search more
arXiv:2210.14741 [math.NT] (Published 2022-10-26)
Legendre symbols related to certain determinants
arXiv:2405.03626 [math.NT] (Published 2024-05-06)
Problems and results on determinants involving Legendre symbols
arXiv:2409.08213 [math.NT] (Published 2024-09-12)
On determinants involving $(\frac{j+k}p)\pm(\frac{j-k}p)$