{ "id": "2408.07034", "version": "v1", "published": "2024-08-13T16:59:15.000Z", "updated": "2024-08-13T16:59:15.000Z", "title": "On a determinant involving linear combinations of Legendre symbols", "authors": [ "Keqin Liu", "Zhi-Wei Sun", "Li-Yuan Wang" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we study a conjecture of the second author on determinants involving Legendre symbols. For example, we prove that for any prime $p\\equiv3\\pmod4$, where $(\\frac{\\cdot}p)$ is the Legendre symbol: $$\\det\\left[x+\\left(\\frac{i-j}p\\right)+\\left(\\frac ip\\right)y+\\left(\\frac jp\\right)z+\\left(\\frac{ij}p\\right)w\\right]_{0\\le i,j\\le(p-3)/2}=x$$", "revisions": [ { "version": "v1", "updated": "2024-08-13T16:59:15.000Z" } ], "analyses": { "subjects": [ "11A15", "11C20", "15A15" ], "keywords": [ "legendre symbol", "linear combinations", "determinant" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }