arXiv:2110.04278 [math.NT]AbstractReferencesReviewsResources
On Large Values of $|ζ(σ+{\rm i}t)|$
Published 2021-10-06, updated 2022-03-12Version 2
We investigate the extreme values of the Riemann zeta function $\zeta(s)$. On the 1-line, we obtain a lower bound evaluation $$\max_{t\in[1,T]}|\zeta(1+\i t)|\ge {\rm e}^\gamma(\log_2T+\log_3T+c),$$ with an effective constant $c$ which improves the result of Aistleitner, Mahatab and Munsch. In the half-critical strip $1/2<\re s<1$, we get an improved $c(\sigma)$ in the evaluation $$\max_{t\in[0,T]}\log|\zeta(\sigma+\i t)|\ge c(\sigma)\frac{(\log T)^{1-\sigma}}{(\log_2T)^\sigma},$$ when $\sigma\searrow 1/2$, based on an improved lower bound of GCD sums. This improves the result of Bondarenko and Seip.
Comments: 19 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1703.08315 [math.NT] (Published 2017-03-24)
Extreme values of the Riemann zeta function on the 1-line
arXiv:1704.06158 [math.NT] (Published 2017-04-20)
Extreme values of the Riemann zeta function and its argument
On the Distribution of large values of $|ζ(σ+{\rm i}t)|$