arXiv Analytics

Sign in

arXiv:1704.06158 [math.NT]AbstractReferencesReviewsResources

Extreme values of the Riemann zeta function and its argument

Andriy Bondarenko, Kristian Seip

Published 2017-04-20Version 1

We combine our version of the resonance method with certain convolution formulas for $\zeta(s)$ and $\log\, \zeta(s)$. This leads to a new $\Omega$ result for $|\zeta(1/2+it)|$: The maximum of $|\zeta(1/2+it)|$ on the interval $1 \le t \le T$ is at least $\exp\left((1+o(1)) \sqrt{\log T \log\log\log T/\log\log T}\right)$. We also obtain conditional results for $S(t):=1/\pi$ times the argument of $\zeta(1/2+it)$ and $S_1(t):=\int_0^t S(\tau)d\tau$. On the Riemann hypothesis, the maximum of $|S(t)|$ is at least $c \sqrt{\log T \log\log\log T/\log\log T}$ and the maximum of $S_1(t)$ is at least $c_1 \sqrt{\log T \log\log\log T/(\log\log T)^3}$ on the interval $T^{\beta} \le t \le T$ whenever $0\le \beta < 1$.

Related articles: Most relevant | Search more
arXiv:1611.05562 [math.NT] (Published 2016-11-17)
On the extreme values of the Riemann zeta function on random intervals of the critical line
arXiv:0707.2406 [math.NT] (Published 2007-07-16)
Other representations of the Riemann Zeta function and an additional reformulation of the Riemann Hypothesis
arXiv:1701.04978 [math.NT] (Published 2017-01-18)
Note on the resonance method for the Riemann zeta function