arXiv Analytics

Sign in

arXiv:2110.03288 [math.NT]AbstractReferencesReviewsResources

On the Distribution of large values of $|ζ(σ+{\rm i}t)|$

Zikang Dong

Published 2021-10-07, updated 2022-02-13Version 3

We investigate the distribution of large values of the Riemann zeta function $\zeta(s)$ in the strip $1/2<\re s<1$. For any fixed $\re s=\sigma\in(1/2,1)$, we obtain an improved distribution function of large values of $|\zeta(\sigma+\i t)|$, holding in the same range as that given by Lamzouri.

Comments: 15 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2110.04278 [math.NT] (Published 2021-10-06, updated 2022-03-12)
On Large Values of $|ζ(σ+{\rm i}t)|$
arXiv:1803.00760 [math.NT] (Published 2018-03-02)
On the proportion of characters with large values of $L(1,χ)$
arXiv:2203.16086 [math.NT] (Published 2022-03-30)
A note on the large values of $|ζ^{(\ell)}(1+{\rm i}t)|$