arXiv Analytics

Sign in

arXiv:1811.07202 [math.GR]AbstractReferencesReviewsResources

Profinite genus of fundamental groups of torus bundles

Genildo de Jesus Nery

Published 2018-11-17, updated 2021-07-13Version 2

In this paper we establish lower and upper bounds for the cardinality of the profinite genus of the fundamental group $\pi_{1}(M_A)\cong (\mathbb{Z} \times \mathbb{Z})\rtimes_{A}\mathbb{Z}$ of a torus bundle $M_{A}$ in terms of the number of ideal classes of the order $\mathbb{Z}[\lambda]$, where $\lambda$ is an eigenvalue of the matrix $A$ in $\mathrm{GL}_{2}(\mathbb{Z})$.

Related articles: Most relevant | Search more
arXiv:2006.11810 [math.GR] (Published 2020-06-21)
Profinite genus of fundamental groups of compact flat manifolds with holonomy group of prime order
arXiv:2305.16054 [math.GR] (Published 2023-05-25)
Profinite genus of free products with finite amalgamation
arXiv:1010.6043 [math.GR] (Published 2010-10-28, updated 2011-05-10)
The fundamental group of random 2-complexes