{ "id": "1811.07202", "version": "v2", "published": "2018-11-17T18:10:44.000Z", "updated": "2021-07-13T21:39:07.000Z", "title": "Profinite genus of fundamental groups of torus bundles", "authors": [ "Genildo de Jesus Nery" ], "categories": [ "math.GR" ], "abstract": "In this paper we establish lower and upper bounds for the cardinality of the profinite genus of the fundamental group $\\pi_{1}(M_A)\\cong (\\mathbb{Z} \\times \\mathbb{Z})\\rtimes_{A}\\mathbb{Z}$ of a torus bundle $M_{A}$ in terms of the number of ideal classes of the order $\\mathbb{Z}[\\lambda]$, where $\\lambda$ is an eigenvalue of the matrix $A$ in $\\mathrm{GL}_{2}(\\mathbb{Z})$.", "revisions": [ { "version": "v2", "updated": "2021-07-13T21:39:07.000Z" } ], "analyses": { "keywords": [ "fundamental group", "torus bundle", "profinite genus", "upper bounds", "ideal classes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }