arXiv:1010.6043 [math.GR]AbstractReferencesReviewsResources
The fundamental group of random 2-complexes
Eric Babson, Christopher Hoffman, Matthew Kahle
Published 2010-10-28, updated 2011-05-10Version 2
We study Linial-Meshulam random 2-complexes, which are two-dimensional analogues of Erd\H{o}s-R\'enyi random graphs. We find the threshold for simple connectivity to be p = n^{-1/2}. This is in contrast to the threshold for vanishing of the first homology group, which was shown earlier by Linial and Meshulam to be p = 2 log(n)/n. We use a variant of Gromov's local-to-global theorem for linear isoperimetric inequalities to show that when p = O(n^{-1/2 -\epsilon}) the fundamental group is word hyperbolic. Along the way we classify the homotopy types of sparse 2-dimensional simplicial complexes and establish isoperimetric inequalities for such complexes.