arXiv Analytics

Sign in

arXiv:1805.04963 [math.NT]AbstractReferencesReviewsResources

Fields $\mathbb{Q}(\sqrt[3]{d},ΞΆ_3)$ whose $3$-class group is of type $(9,3)$

Siham Aouissi, Mohamed Talbi, Moulay Chrif Ismaili, Abdelmalek Azizi

Published 2018-05-13Version 1

Let $\mathrm{k}=\mathbb{Q}(\sqrt[3]{d},\zeta_3)$, with $d$ a cube-free positive integer. Let $C_{\mathrm{k},3}$ be the $3$-component of the class group of $\mathrm{k}$. By the aid of genus theory, arithmetic proprieties of the pure cubic field $\mathbb{Q}(\sqrt[3]{d})$ and some results on the $3$-class group $C_{\mathrm{k},3}$, we are moving towards the determination of all integers $d$ such that $C_{\mathrm{k},3} \simeq \mathbb{Z}/9\mathbb{Z}\times \mathbb{Z}/3\mathbb{Z}$.

Related articles: Most relevant | Search more
arXiv:2005.04314 [math.NT] (Published 2020-05-08)
The generators of $5$-class group of some fields of degree 20 over $\mathbb{Q}$
arXiv:1804.00692 [math.NT] (Published 2018-04-02)
The generators of $3$-class group of some fields of degree $6$ over $\mathbb{Q}$
arXiv:1403.0662 [math.NT] (Published 2014-03-04)
On the rank of the $2$-class group of $\mathbb{Q}(\sqrt{p}, \sqrt{q},\sqrt{-1})$