arXiv Analytics

Sign in

arXiv:1804.00692 [math.NT]AbstractReferencesReviewsResources

The generators of $3$-class group of some fields of degree $6$ over $\mathbb{Q}$

Siham Aouissi, Moulay Chrif Ismaili, Mohamed Talbi, Abdelmalek Azizi

Published 2018-04-02Version 1

Let $\mathrm{k}=\mathbb{Q}\left(\sqrt[3]{p},\zeta_3\right)$, where $p$ is a prime number such that $p \equiv 1 \pmod 9$, and let $C_{\mathrm{k},3}$ be the $3$-component of the class group of $\mathrm{k}$. In \cite{GERTH3}, Frank Gerth III proves a conjecture made by Calegari and Emerton \cite{Cal-Emer} which gives necessary and sufficient conditions for $C_{\mathrm{k},3}$ to be of $\operatorname{rank}\,$ two. The purpose of the present work is to determine generators of $C_{\mathrm{k},3}$, whenever it is isomorphic to $\mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

Comments: 16 pages, 2 tables
Journal: Boletim Sociedade Paranaense de Mathematica Journal 2018
Categories: math.NT
Subjects: 11R11, 11R16, 11R20, 11R27, 11R29, 11R37
Related articles: Most relevant | Search more
arXiv:2005.04314 [math.NT] (Published 2020-05-08)
The generators of $5$-class group of some fields of degree 20 over $\mathbb{Q}$
arXiv:1805.04963 [math.NT] (Published 2018-05-13)
Fields $\mathbb{Q}(\sqrt[3]{d},ΞΆ_3)$ whose $3$-class group is of type $(9,3)$
arXiv:1403.0662 [math.NT] (Published 2014-03-04)
On the rank of the $2$-class group of $\mathbb{Q}(\sqrt{p}, \sqrt{q},\sqrt{-1})$