{ "id": "1805.04963", "version": "v1", "published": "2018-05-13T22:04:41.000Z", "updated": "2018-05-13T22:04:41.000Z", "title": "Fields $\\mathbb{Q}(\\sqrt[3]{d},ΞΆ_3)$ whose $3$-class group is of type $(9,3)$", "authors": [ "Siham Aouissi", "Mohamed Talbi", "Moulay Chrif Ismaili", "Abdelmalek Azizi" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "Let $\\mathrm{k}=\\mathbb{Q}(\\sqrt[3]{d},\\zeta_3)$, with $d$ a cube-free positive integer. Let $C_{\\mathrm{k},3}$ be the $3$-component of the class group of $\\mathrm{k}$. By the aid of genus theory, arithmetic proprieties of the pure cubic field $\\mathbb{Q}(\\sqrt[3]{d})$ and some results on the $3$-class group $C_{\\mathrm{k},3}$, we are moving towards the determination of all integers $d$ such that $C_{\\mathrm{k},3} \\simeq \\mathbb{Z}/9\\mathbb{Z}\\times \\mathbb{Z}/3\\mathbb{Z}$.", "revisions": [ { "version": "v1", "updated": "2018-05-13T22:04:41.000Z" } ], "analyses": { "subjects": [ "11R11", "11R16", "11R20", "11R27", "11R29", "11R37" ], "keywords": [ "class group", "pure cubic field", "cube-free positive integer", "genus theory", "arithmetic proprieties" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }