{ "id": "1804.00692", "version": "v1", "published": "2018-04-02T18:46:35.000Z", "updated": "2018-04-02T18:46:35.000Z", "title": "The generators of $3$-class group of some fields of degree $6$ over $\\mathbb{Q}$", "authors": [ "Siham Aouissi", "Moulay Chrif Ismaili", "Mohamed Talbi", "Abdelmalek Azizi" ], "comment": "16 pages, 2 tables", "journal": "Boletim Sociedade Paranaense de Mathematica Journal 2018", "doi": "10.5269/bspm.40672", "categories": [ "math.NT" ], "abstract": "Let $\\mathrm{k}=\\mathbb{Q}\\left(\\sqrt[3]{p},\\zeta_3\\right)$, where $p$ is a prime number such that $p \\equiv 1 \\pmod 9$, and let $C_{\\mathrm{k},3}$ be the $3$-component of the class group of $\\mathrm{k}$. In \\cite{GERTH3}, Frank Gerth III proves a conjecture made by Calegari and Emerton \\cite{Cal-Emer} which gives necessary and sufficient conditions for $C_{\\mathrm{k},3}$ to be of $\\operatorname{rank}\\,$ two. The purpose of the present work is to determine generators of $C_{\\mathrm{k},3}$, whenever it is isomorphic to $\\mathbb{Z}/9\\mathbb{Z} \\times \\mathbb{Z}/3\\mathbb{Z}$.", "revisions": [ { "version": "v1", "updated": "2018-04-02T18:46:35.000Z" } ], "analyses": { "subjects": [ "11R11", "11R16", "11R20", "11R27", "11R29", "11R37" ], "keywords": [ "class group", "prime number", "frank gerth", "sufficient conditions", "determine generators" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }