arXiv Analytics

Sign in

arXiv:1606.08134 [math.CV]AbstractReferencesReviewsResources

On Some Subclass of Harmonic Close-to-convex Mappings

Nirupam Ghosh, A. Vasudevarao

Published 2016-06-27Version 1

Let $\mathcal{H}$ denote the class of harmonic functions $f$ in $\mathbb{D}:= \{z\in \mathbb{C}:|z| < 1\}$ normalized by $f(0) = 0 = f_z(0) -1$. For $\alpha \geq 0$, we consider the following class $$\mathcal{W}^0_{\mathcal{H}}(\alpha):= \{f = h + \overline{g}\in\mathcal{H}: {\rm Re\,}(h'(z) + \alpha z h''(z)) >|g'(z) + \alpha z g''(z)|, \quad z\in \mathbb{D}\}. $$ In this paper, we first prove the coefficient conjecture of Clunie and Sheil-Small for functions in the class $\mathcal{W}^0_{\mathcal{H}}(\alpha)$. We also prove growth theorem, convolution, convex combination properties for functions in the class $\mathcal{W}^0_{\mathcal{H}}(\alpha)$. Finally, we determine the value of $r$ so that the partial sums of functions in the class $\mathcal{W}^0_{\mathcal{H}}(\alpha)$ are close-to-convex in $|z|<r$.

Related articles: Most relevant | Search more
arXiv:0907.2834 [math.CV] (Published 2009-07-16)
On certain classes of harmonic functions defined by the fractional derivatives
arXiv:1701.05413 [math.CV] (Published 2017-01-19)
Logarithmic Coefficients and a Coefficient Conjecture for Univalent Functions
arXiv:2312.06894 [math.CV] (Published 2023-12-11)
Schwarz-Pick Lemma for $(α, β)$-Harmonic Functions in the Unit Disc