{ "id": "1606.08134", "version": "v1", "published": "2016-06-27T06:22:33.000Z", "updated": "2016-06-27T06:22:33.000Z", "title": "On Some Subclass of Harmonic Close-to-convex Mappings", "authors": [ "Nirupam Ghosh", "A. Vasudevarao" ], "comment": "18 Pages", "categories": [ "math.CV" ], "abstract": "Let $\\mathcal{H}$ denote the class of harmonic functions $f$ in $\\mathbb{D}:= \\{z\\in \\mathbb{C}:|z| < 1\\}$ normalized by $f(0) = 0 = f_z(0) -1$. For $\\alpha \\geq 0$, we consider the following class $$\\mathcal{W}^0_{\\mathcal{H}}(\\alpha):= \\{f = h + \\overline{g}\\in\\mathcal{H}: {\\rm Re\\,}(h'(z) + \\alpha z h''(z)) >|g'(z) + \\alpha z g''(z)|, \\quad z\\in \\mathbb{D}\\}. $$ In this paper, we first prove the coefficient conjecture of Clunie and Sheil-Small for functions in the class $\\mathcal{W}^0_{\\mathcal{H}}(\\alpha)$. We also prove growth theorem, convolution, convex combination properties for functions in the class $\\mathcal{W}^0_{\\mathcal{H}}(\\alpha)$. Finally, we determine the value of $r$ so that the partial sums of functions in the class $\\mathcal{W}^0_{\\mathcal{H}}(\\alpha)$ are close-to-convex in $|z|