arXiv:0907.2834 [math.CV]AbstractReferencesReviewsResources
On certain classes of harmonic functions defined by the fractional derivatives
M. Eshaghi Gordji, S. Shams, A. Ebadian
Published 2009-07-16Version 1
In this paper we have introduced two new classes $\mathcal{H}\mathcal{M}(\beta, \lambda, k, \nu)$ and $\overline{\mathcal{H}\mathcal{M}} (\beta, \lambda, k, \nu)$ of complex valued harmonic multivalent functions of the form $f = h + \overline g$, satisfying the condition \[ Re \{(1 - \lambda) \frac{\Omega^vf}{z} + \lambda(1-k) \frac{(\Omega^vf)'}{z'} + \lambda k \frac{(\Omega^vf)''}{z''} \} > \beta, (z\in \mathcal{D})\] where $h$ and $g$ are analytic in the unit disk $\mathcal{D} = \{z : |z| < 1\}.$ A sufficient coefficient condition for this function in the class $\mathcal{H}\mathcal{M}(\beta, \lambda, k, \nu)$ and a necessary and sufficient coefficient condition for the function $f$ in the class $\overline{\mathcal{H}\mathcal{M}}(\beta, \lambda, k, \nu)$ are determined. We investigate inclusion relations, distortion theorem, extreme points, convex combination and other interesting properties for these families of harmonic functions.