arXiv Analytics

Sign in

arXiv:0907.2834 [math.CV]AbstractReferencesReviewsResources

On certain classes of harmonic functions defined by the fractional derivatives

M. Eshaghi Gordji, S. Shams, A. Ebadian

Published 2009-07-16Version 1

In this paper we have introduced two new classes $\mathcal{H}\mathcal{M}(\beta, \lambda, k, \nu)$ and $\overline{\mathcal{H}\mathcal{M}} (\beta, \lambda, k, \nu)$ of complex valued harmonic multivalent functions of the form $f = h + \overline g$, satisfying the condition \[ Re \{(1 - \lambda) \frac{\Omega^vf}{z} + \lambda(1-k) \frac{(\Omega^vf)'}{z'} + \lambda k \frac{(\Omega^vf)''}{z''} \} > \beta, (z\in \mathcal{D})\] where $h$ and $g$ are analytic in the unit disk $\mathcal{D} = \{z : |z| < 1\}.$ A sufficient coefficient condition for this function in the class $\mathcal{H}\mathcal{M}(\beta, \lambda, k, \nu)$ and a necessary and sufficient coefficient condition for the function $f$ in the class $\overline{\mathcal{H}\mathcal{M}}(\beta, \lambda, k, \nu)$ are determined. We investigate inclusion relations, distortion theorem, extreme points, convex combination and other interesting properties for these families of harmonic functions.

Related articles: Most relevant | Search more
arXiv:2312.06894 [math.CV] (Published 2023-12-11)
Schwarz-Pick Lemma for $(α, β)$-Harmonic Functions in the Unit Disc
arXiv:1606.08134 [math.CV] (Published 2016-06-27)
On Some Subclass of Harmonic Close-to-convex Mappings
arXiv:1107.4443 [math.CV] (Published 2011-07-22, updated 2011-07-28)
On some extremal problems in spaces of harmonic functions