{ "id": "0907.2834", "version": "v1", "published": "2009-07-16T13:17:57.000Z", "updated": "2009-07-16T13:17:57.000Z", "title": "On certain classes of harmonic functions defined by the fractional derivatives", "authors": [ "M. Eshaghi Gordji", "S. Shams", "A. Ebadian" ], "categories": [ "math.CV" ], "abstract": "In this paper we have introduced two new classes $\\mathcal{H}\\mathcal{M}(\\beta, \\lambda, k, \\nu)$ and $\\overline{\\mathcal{H}\\mathcal{M}} (\\beta, \\lambda, k, \\nu)$ of complex valued harmonic multivalent functions of the form $f = h + \\overline g$, satisfying the condition \\[ Re \\{(1 - \\lambda) \\frac{\\Omega^vf}{z} + \\lambda(1-k) \\frac{(\\Omega^vf)'}{z'} + \\lambda k \\frac{(\\Omega^vf)''}{z''} \\} > \\beta, (z\\in \\mathcal{D})\\] where $h$ and $g$ are analytic in the unit disk $\\mathcal{D} = \\{z : |z| < 1\\}.$ A sufficient coefficient condition for this function in the class $\\mathcal{H}\\mathcal{M}(\\beta, \\lambda, k, \\nu)$ and a necessary and sufficient coefficient condition for the function $f$ in the class $\\overline{\\mathcal{H}\\mathcal{M}}(\\beta, \\lambda, k, \\nu)$ are determined. We investigate inclusion relations, distortion theorem, extreme points, convex combination and other interesting properties for these families of harmonic functions.", "revisions": [ { "version": "v1", "updated": "2009-07-16T13:17:57.000Z" } ], "analyses": { "subjects": [ "30C45", "30C80" ], "keywords": [ "harmonic functions", "fractional derivatives", "sufficient coefficient condition", "complex valued harmonic multivalent functions", "distortion theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.2834E" } } }