arXiv Analytics

Sign in

arXiv:0708.1601 [math.NT]AbstractReferencesReviewsResources

On the mean square of the divisor function in short intervals

Aleksandar Ivić

Published 2007-08-12, updated 2009-01-19Version 2

We provide upper bounds for the mean square integral $$ \int_X^{2X}(\Delta_k(x+h) - \Delta_k(x))^2 dx \qquad(h = h(X)\gg1, h = o(x) {\roman{as}} X\to\infty) $$ where $h$ lies in a suitable range. For $k\ge2$ a fixed integer, $\Delta_k(x)$ is the error term in the asymptotic formula for the summatory function of the divisor function $d_k(n)$, generated by $\zeta^k(s)$.

Comments: 11 pages
Journal: J. Th\'eorie des Nombres Bordeaux 21(2009), 195-205
Categories: math.NT
Subjects: 11M06, 11N37
Related articles: Most relevant | Search more
arXiv:math/0510114 [math.NT] (Published 2005-10-06)
On the integral of the error term in the Dirichlet divisor problem
arXiv:math/0411537 [math.NT] (Published 2004-11-24)
On the higher moments of the error term in the divisor problem
arXiv:0707.1756 [math.NT] (Published 2007-07-12, updated 2007-11-08)
On the divisor function and the Riemann zeta-function in short intervals