{ "id": "0708.1601", "version": "v2", "published": "2007-08-12T08:50:48.000Z", "updated": "2009-01-19T08:05:51.000Z", "title": "On the mean square of the divisor function in short intervals", "authors": [ "Aleksandar Ivić" ], "comment": "11 pages", "journal": "J. Th\\'eorie des Nombres Bordeaux 21(2009), 195-205", "categories": [ "math.NT" ], "abstract": "We provide upper bounds for the mean square integral $$ \\int_X^{2X}(\\Delta_k(x+h) - \\Delta_k(x))^2 dx \\qquad(h = h(X)\\gg1, h = o(x) {\\roman{as}} X\\to\\infty) $$ where $h$ lies in a suitable range. For $k\\ge2$ a fixed integer, $\\Delta_k(x)$ is the error term in the asymptotic formula for the summatory function of the divisor function $d_k(n)$, generated by $\\zeta^k(s)$.", "revisions": [ { "version": "v2", "updated": "2009-01-19T08:05:51.000Z" } ], "analyses": { "subjects": [ "11M06", "11N37" ], "keywords": [ "divisor function", "short intervals", "mean square integral", "upper bounds", "error term" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.1601I" } } }