arXiv:math/0411537 [math.NT]AbstractReferencesReviewsResources
On the higher moments of the error term in the divisor problem
Aleksandar Ivić, Patrick Sargos
Published 2004-11-24Version 1
Let $\Delta(x)$ denote the error term in the Dirichlet divisor problem. Our main results are the asymptotic formulas $$ \int_1^X \Delta^3(x){\rm d}x = BX^{7/4} + O_\epsilon(X^{\beta+\epsilon}) \qquad(B > 0) $$ and $$ \int_1^X \Delta^4(x){\rm d}x = CX^2 + O_\epsilon(X^{\gamma+\epsilon}) \qquad(C > 0) $$ with $\beta = 7/5, \gamma = 23/12$. This improves on the values $\beta = 47/28, \gamma = 45/23$, due to K.-M. Tsang. A result on the integrals of $\Delta^3(x)$ and $\Delta^4(x)$ in short intervals is also proved.
Comments: 27 pages
Journal: Illinois Journal of Mathematics 51(2007), 353-377.
Categories: math.NT
Tags: journal article
Related articles: Most relevant | Search more
Higher moments of the error term in the divisor problem
arXiv:1711.09589 [math.NT] (Published 2017-11-27)
On certain integrals involving the Dirichlet divisor problem
arXiv:math/0510114 [math.NT] (Published 2005-10-06)
On the integral of the error term in the Dirichlet divisor problem