arXiv:nucl-th/9502012AbstractReferencesReviewsResources
Relativistic Effects in Heavy-Ion Collisions at SIS Energies
Rajeev K. Puri, E. Lehmann, Amand Faessler, S. W. Huang
Published 1995-02-03Version 1
The covariant and non-covariant Quantum Molecular Dynamics models are applied to investigate possible relativistic effects in heavy ion collisions at SIS energies. These relativistic effects which arise due to the full covariant treatment of the dynamics are studied at bombarding energies E$_{lab.}$ = 50, 250, 500, 750, 1000, 1250, 1500, 1750 and 2000 MeV/nucl.. A wide range of the impact parameter from b = 0 fm to b = 10 fm is also considered. In the present study, five systems $^{12}$C-$^{12}$C, $^{16}$O-$^{16}$O, $^{20}$Ne-$^{20}$Ne, $^{28}$Si-$^{28}$Si and $^{40}$Ca-$^{40}$Ca are investigated. The full covariant treatment at low energies shows quite good agreement with the corresponding non-covariant approach whereas at higher energies it shows less stopping and hence less thermal equilibrium as compared to the non-covariant approach. The collisions dynamics is less affected. The density using RQMD rises and drops faster than with QMD. The relativistic effects show some influence on the resonance matter production. Overall, the relativistic effects at SIS energies ($\leq$ 2000 MeV/nucl.) are less significant.