arXiv Analytics

Sign in

arXiv:math/0703108 [math.NT]AbstractReferencesReviewsResources

Discrepancy of Sums of two Arithmetic Progressions

Nils Hebbinghaus

Published 2007-03-05Version 1

Estimating the discrepancy of the hypergraph of all arithmetic progressions in the set $[N]=\{1,2,\hdots,N\}$ was one of the famous open problems in combinatorial discrepancy theory for a long time. An extension of this classical hypergraph is the hypergraph of sums of $k$ ($k\geq 1$ fixed) arithmetic progressions. The hyperedges of this hypergraph are of the form $A_{1}+A_{2}+\hdots+A_{k}$ in $[N]$, where the $A_{i}$ are arithmetic progressions. For this hypergraph Hebbinghaus (2004) proved a lower bound of $\Omega(N^{k/(2k+2)})$. Note that the probabilistic method gives an upper bound of order $O((N\log N)^{1/2})$ for all fixed $k$. P\v{r}\'{i}v\v{e}tiv\'{y} improved the lower bound for all $k\geq 3$ to $\Omega(N^{1/2})$ in 2005. Thus, the case $k=2$ (hypergraph of sums of two arithmetic progressions) remained the only case with a large gap between the known upper and lower bound. We bridge his gap (up to a logarithmic factor) by proving a lower bound of order $\Omega(N^{1/2})$ for the discrepancy of the hypergraph of sums of two arithmetic progressions.

Comments: 15 pages, 0 figures
Categories: math.NT
Subjects: 11K38
Related articles: Most relevant | Search more
arXiv:1211.4468 [math.NT] (Published 2012-11-19)
New Lower Bounds for the Least Common Multiples of Arithmetic Progressions
arXiv:1406.7326 [math.NT] (Published 2014-06-27)
Bounding sums of the Möbius function over arithmetic progressions
arXiv:1802.00085 [math.NT] (Published 2018-01-31)
Explicit bounds for primes in arithmetic progressions