arXiv Analytics

Sign in

arXiv:math/0612723 [math.GR]AbstractReferencesReviewsResources

Derived Length and Products of Conjugacy Classes

Edith Adan-Bante

Published 2006-12-22Version 1

Let $G$ be a supersolvable group and $A$ be a conjugacy class of $G$. Observe that for some integer $\eta(AA^{-1})>0$, $AA^{-1}=\{a b^{-1}\mid a,b\in A\}$ is the union of $\eta(AA^{-1})$ distinct conjugacy classes of $G$. Set ${\bf C}_G(A)=\{g\in G\mid a^g=a\text{for all} a\in A\}$. Then the derived length of $G/{\bf C}_G(A)$ is less or equal than $2\eta(A A^{-1})-1$.

Related articles: Most relevant | Search more
arXiv:0905.1342 [math.GR] (Published 2009-05-08, updated 2009-07-07)
On conjugacy classes and derived length
arXiv:2411.18534 [math.GR] (Published 2024-11-27)
Derived length of stabilizers in finite permutation groups
arXiv:0904.0450 [math.GR] (Published 2009-04-02, updated 2009-07-01)
On conjugacy classes of SL$(2,q)$