{ "id": "math/0612723", "version": "v1", "published": "2006-12-22T20:46:20.000Z", "updated": "2006-12-22T20:46:20.000Z", "title": "Derived Length and Products of Conjugacy Classes", "authors": [ "Edith Adan-Bante" ], "categories": [ "math.GR" ], "abstract": "Let $G$ be a supersolvable group and $A$ be a conjugacy class of $G$. Observe that for some integer $\\eta(AA^{-1})>0$, $AA^{-1}=\\{a b^{-1}\\mid a,b\\in A\\}$ is the union of $\\eta(AA^{-1})$ distinct conjugacy classes of $G$. Set ${\\bf C}_G(A)=\\{g\\in G\\mid a^g=a\\text{for all} a\\in A\\}$. Then the derived length of $G/{\\bf C}_G(A)$ is less or equal than $2\\eta(A A^{-1})-1$.", "revisions": [ { "version": "v1", "updated": "2006-12-22T20:46:20.000Z" } ], "analyses": { "keywords": [ "derived length", "distinct conjugacy classes", "supersolvable group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12723A" } } }