arXiv:math/0410539 [math.GR]AbstractReferencesReviewsResources
Discrete Morse theory and graph braid groups
Published 2004-10-25, updated 2005-09-04Version 3
If Gamma is any finite graph, then the unlabelled configuration space of n points on Gamma, denoted UC^n(Gamma), is the space of n-element subsets of Gamma. The braid group of Gamma on n strands is the fundamental group of UC^n(Gamma). We apply a discrete version of Morse theory to these UC^n(Gamma), for any n and any Gamma, and provide a clear description of the critical cells in every case. As a result, we can calculate a presentation for the braid group of any tree, for any number of strands. We also give a simple proof of a theorem due to Ghrist: the space UC^n(Gamma) strong deformation retracts onto a CW complex of dimension at most k, where k is the number of vertices in Gamma of degree at least 3 (and k is thus independent of n).