arXiv Analytics

Sign in

arXiv:math/0112308 [math.GT]AbstractReferencesReviewsResources

Homological properties of graph manifolds

P. Svetlov

Published 2001-12-31, updated 2002-01-03Version 2

We consider the following properties of compact oriented irreducible graph-manifolds: to contain a $\pi_1$-injective surface (immersed, virtually embedded or embedded), be (virtually) fibered over $S^1$, and to carry a metric of nonpositive sectional curvature. It turns out that all these properties can be described from a unified point of view.

Related articles: Most relevant | Search more
arXiv:math/0011130 [math.GT] (Published 2000-11-17)
Tautly foliated 3-manifolds with no R-covered foliations
arXiv:1807.10522 [math.GT] (Published 2018-07-27)
Integral approximation of simplicial volume of graph manifolds
arXiv:2408.16635 [math.GT] (Published 2024-08-29)
A classification of SU(2)-abelian graph manifolds