{ "id": "math/0112308", "version": "v2", "published": "2001-12-31T14:42:48.000Z", "updated": "2002-01-03T17:05:57.000Z", "title": "Homological properties of graph manifolds", "authors": [ "P. Svetlov" ], "comment": "17 pages", "categories": [ "math.GT" ], "abstract": "We consider the following properties of compact oriented irreducible graph-manifolds: to contain a $\\pi_1$-injective surface (immersed, virtually embedded or embedded), be (virtually) fibered over $S^1$, and to carry a metric of nonpositive sectional curvature. It turns out that all these properties can be described from a unified point of view.", "revisions": [ { "version": "v2", "updated": "2002-01-03T17:05:57.000Z" } ], "analyses": { "subjects": [ "57M50", "57M10", "57N10", "57N35" ], "keywords": [ "graph manifolds", "homological properties", "compact oriented irreducible graph-manifolds", "nonpositive sectional curvature", "unified point" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math.....12308S" } } }