### arXiv:hep-th/9503126AbstractReferencesReviewsResources

#### Anyons in 1+1 Dimensions

Published 1995-03-20Version 1

The possibility of excitations with fractional spin and statististics in $1+1$ dimensions is explored. The configuration space of a two-particle system is the half-line. This makes the Hamiltonian self-adjoint for a family of boundary conditions parametrized by one real number $\gamma$. The limit $\gamma \rightarrow 0, (\infty$) reproduces the propagator of non-relativistic particles whose wavefunctions are even (odd) under particle exchange. A relativistic ansatz is also proposed which reproduces the correct Polyakov spin factor for the spinning particle in $1+1$ dimensions. These checks support validity of the interpretation of $\gamma$ as a parameter related to the ``spin'' that interpolates continuously between bosons ($\gamma =0$) and fermions ($\gamma =\infty$). Our approach can thus be useful for obtaining the propagator for one-dimensional anyons.

**Comments:**13p. latex (Revtex), no figures.

**Journal:**Phys.Lett. B357 (1995) 131-137

**Keywords:**dimensions, correct polyakov spin factor, checks support validity, one-dimensional anyons, configuration space

**Tags:**journal article