arXiv:cond-mat/0403534AbstractReferencesReviewsResources
Spin polarization of electrons with Rashba double-refraction
V. Marigliano Ramaglia, D. Bercioux, V. Cataudella, G. De Filippis, C. A. Perroni
Published 2004-03-22, updated 2004-11-19Version 3
We demonstrate how the Rashba spin-orbit coupling in semiconductor heterostructures can produce and control a spin-polarized current without ferromagnetic leads. Key idea is to use spin-double refraction of an electronic beam with a nonzero incidence angle. A region where the spin-orbit coupling is present separates the source and the drain without spin-orbit coupling. We show how the transmission and the beam spin-polarization critically depend on the incidence angle. The transmission halves when the incidence angle is greater than a limit angle and a significant spin-polarization appears. Increasing the spin-orbit coupling one can obtain the modulation of the intensity and of the spin-polarization of the output electronic current when the input current is unpolarized. Our analysis shows the possibility to realize a spin-field-effect transistor based on the propagation of only one mode with the region with spin-orbit coupling. Where the original Datta and Das device [Appl.Phys.Lett. {\bf 56}, 665 (1990)] use the spin-precession that originates from the interference between two modes with orthogonal spin.