arXiv:2501.17857 [astro-ph.EP]AbstractReferencesReviewsResources
Planetesimal formation in a pressure bump induced by infall
Haichen Zhao, Tommy Chi Ho Lau, Tilman Birnstiel, Sebastian M. Stammler, Joanna Drążkowska
Published 2025-01-29Version 1
Infall of interstellar material is a potential non-planetary origin of pressure bumps in protoplanetary disks. While pressure bumps arising from other mechanisms have been numerically demonstrated to promote planet formation, the impact of infall-induced pressure bumps remains unexplored. We aim to investigate the potential for planetesimal formation in an infall-induced pressure bump, starting with sub-micrometer-sized dust grains, and to identify the conditions most conducive to triggering this process. We developed a numerical model that integrates axisymmetric infall, dust drift, and dust coagulation, along with planetesimal formation via streaming instability. Our parameter space includes gas viscosity, dust fragmentation velocity, initial disk mass, characteristic disk radius, infall rate and duration, as well as the location and width of the infall region. An infall-induced pressure bump can trap dust from both the infalling material and the outer disk, promoting dust growth. The locally enhanced dust-to-gas ratio triggers streaming instability, forming a planetesimal belt inside the central infall location until the pressure bump is smoothed out by viscous gas diffusion. Planetesimal formation is favored by a massive, narrow streamer infalling onto a low-viscosity, low-mass, and spatially extended disk containing dust with a high fragmentation velocity. This configuration enhances the outward drift speed of dust on the inner side of the pressure bump, while also ensuring the prolonged persistence of the pressure bump. Planetesimal formation can occur even if the infalling material consists solely of gas. A pressure bump induced by infall is a favorable site for dust growth and planetesimal formation, and this mechanism does not require a preexisting massive planet to create the bump.