arXiv Analytics

Sign in

arXiv:2306.13363 [math.GR]AbstractReferencesReviewsResources

A Characterization of Group Through Isomorphism Classes of Transversals

Vivek Kumar Jain, Raja Rawat

Published 2023-06-23Version 1

Let G be a group and H a subgroup of G of finite index. In this article, it is proved that if the number of isomorphism classes of right transversals of H in G is 5, then the index of H in G is 6 and the permutation representation of G on right cosets of H in G is isomorphic to the alternating group on four symbols.

Comments: 20 pages, 1 table
Categories: math.GR
Subjects: 20D60, 20N05
Related articles: Most relevant | Search more
arXiv:1512.08215 [math.GR] (Published 2015-12-27)
A characterization of A_5 by its Same-order type
arXiv:math/0612705 [math.GR] (Published 2006-12-22)
Abelian subgroups of \Out(F_n)
arXiv:0812.2486 [math.GR] (Published 2008-12-12, updated 2009-05-24)
Characterization of linear groups whose reduced C*-algebras are simple