{ "id": "2306.13363", "version": "v1", "published": "2023-06-23T08:28:56.000Z", "updated": "2023-06-23T08:28:56.000Z", "title": "A Characterization of Group Through Isomorphism Classes of Transversals", "authors": [ "Vivek Kumar Jain", "Raja Rawat" ], "comment": "20 pages, 1 table", "categories": [ "math.GR" ], "abstract": "Let G be a group and H a subgroup of G of finite index. In this article, it is proved that if the number of isomorphism classes of right transversals of H in G is 5, then the index of H in G is 6 and the permutation representation of G on right cosets of H in G is isomorphic to the alternating group on four symbols.", "revisions": [ { "version": "v1", "updated": "2023-06-23T08:28:56.000Z" } ], "analyses": { "subjects": [ "20D60", "20N05" ], "keywords": [ "isomorphism classes", "characterization", "right cosets", "finite index", "right transversals" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }