arXiv Analytics

Sign in

arXiv:2105.10844 [math.NT]AbstractReferencesReviewsResources

A variant of the prime number theorem

Kui Liu, Jie Wu, Zhishan Yang

Published 2021-05-23Version 1

Let $\Lambda(n)$ be the von Mangoldt function, and let $[t]$ be the integral part of real number $t$. In this note, we prove that for any $\varepsilon>0$ the asymptotic formula $$ \sum_{n\le x} \Lambda\Big(\Big[\frac{x}{n}\Big]\Big) = x\sum_{d\ge 1} \frac{\Lambda(d)}{d(d+1)} + O_{\varepsilon}\big(x^{9/19+\varepsilon}\big) \qquad (x\to\infty)$$ holds. This improves a recent result of Bordell\`es, which requires $\frac{97}{203}$ in place of $\frac{9}{19}$.

Related articles: Most relevant | Search more
arXiv:1310.2715 [math.NT] (Published 2013-10-10)
On the asymptotic formula of L'(1, χ)
arXiv:1110.6864 [math.NT] (Published 2011-10-31)
Asymptotics for numbers of line segments and lines in a square grid
arXiv:math/0507259 [math.NT] (Published 2005-07-13)
Asymptotic formula for sum-free sets in abelian groups