{ "id": "2105.10844", "version": "v1", "published": "2021-05-23T01:52:16.000Z", "updated": "2021-05-23T01:52:16.000Z", "title": "A variant of the prime number theorem", "authors": [ "Kui Liu", "Jie Wu", "Zhishan Yang" ], "categories": [ "math.NT" ], "abstract": "Let $\\Lambda(n)$ be the von Mangoldt function, and let $[t]$ be the integral part of real number $t$. In this note, we prove that for any $\\varepsilon>0$ the asymptotic formula $$ \\sum_{n\\le x} \\Lambda\\Big(\\Big[\\frac{x}{n}\\Big]\\Big) = x\\sum_{d\\ge 1} \\frac{\\Lambda(d)}{d(d+1)} + O_{\\varepsilon}\\big(x^{9/19+\\varepsilon}\\big) \\qquad (x\\to\\infty)$$ holds. This improves a recent result of Bordell\\`es, which requires $\\frac{97}{203}$ in place of $\\frac{9}{19}$.", "revisions": [ { "version": "v1", "updated": "2021-05-23T01:52:16.000Z" } ], "analyses": { "keywords": [ "prime number theorem", "von mangoldt function", "asymptotic formula", "integral part", "real number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }