arXiv:2007.12827 [math.CV]AbstractReferencesReviewsResources
Norm estimates of the partial derivatives for harmonic mappings and harmonic quasiregular mappings
Published 2020-07-25Version 1
Suppose $p\geq1$, $w=P[F]$ is a harmonic mapping of the unit disk $\mathbb{D}$ satisfying $F$ is absolutely continuous and $\dot{F}\in L^p(0, 2\pi)$, where $\dot{F}(e^{it})=\frac{\mathrm{d}}{\mathrm{d}t}F(e^{it})$. In this paper, we obtain Bergman norm estimates of the partial derivatives for $w$, i.e., $\|w_z\|_{L^p}$ and $\|\overline{w_{\bar{z}}}\|_{L^p}$, where $1\leq p<2$. Furthermore, if $w$ is a harmonic quasiregular mapping of $\mathbb{D}$, then we show that $w_z$ and $\overline{w_{\bar{z}}}$ are in the Hardy space $H^p$, where $1\leq p\leq\infty$. The corresponding Hardy norm estimates, $\|w_z\|_{p}$ and $\|\overline{w_{\bar{z}}}\|_{p}$, are also obtained.
Comments: 17 pages
Journal: The Journal of Geometric Analysis, 2020
Categories: math.CV
Keywords: harmonic quasiregular mapping, partial derivatives, harmonic mapping, corresponding hardy norm estimates, bergman norm estimates
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2008.11553 [math.CV] (Published 2020-08-26)
Norm estimates of the partial derivatives for harmonic and harmonic elliptic mappings
arXiv:2107.01756 [math.CV] (Published 2021-07-05)
Lower and upper order of harmonic mappings
arXiv:2005.02101 [math.CV] (Published 2020-05-05)
Koebe and Caratheódory type boundary behavior results for harmonic mappings