{ "id": "2007.12827", "version": "v1", "published": "2020-07-25T01:55:54.000Z", "updated": "2020-07-25T01:55:54.000Z", "title": "Norm estimates of the partial derivatives for harmonic mappings and harmonic quasiregular mappings", "authors": [ "Jian-Feng Zhu" ], "comment": "17 pages", "journal": "The Journal of Geometric Analysis, 2020", "doi": "10.1007/s12220-020-00488-x", "categories": [ "math.CV" ], "abstract": "Suppose $p\\geq1$, $w=P[F]$ is a harmonic mapping of the unit disk $\\mathbb{D}$ satisfying $F$ is absolutely continuous and $\\dot{F}\\in L^p(0, 2\\pi)$, where $\\dot{F}(e^{it})=\\frac{\\mathrm{d}}{\\mathrm{d}t}F(e^{it})$. In this paper, we obtain Bergman norm estimates of the partial derivatives for $w$, i.e., $\\|w_z\\|_{L^p}$ and $\\|\\overline{w_{\\bar{z}}}\\|_{L^p}$, where $1\\leq p<2$. Furthermore, if $w$ is a harmonic quasiregular mapping of $\\mathbb{D}$, then we show that $w_z$ and $\\overline{w_{\\bar{z}}}$ are in the Hardy space $H^p$, where $1\\leq p\\leq\\infty$. The corresponding Hardy norm estimates, $\\|w_z\\|_{p}$ and $\\|\\overline{w_{\\bar{z}}}\\|_{p}$, are also obtained.", "revisions": [ { "version": "v1", "updated": "2020-07-25T01:55:54.000Z" } ], "analyses": { "subjects": [ "30C55", "30C62", "F.2.2", "I.2.7" ], "keywords": [ "harmonic quasiregular mapping", "partial derivatives", "harmonic mapping", "corresponding hardy norm estimates", "bergman norm estimates" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }