arXiv Analytics

Sign in

arXiv:1810.12990 [math.NT]AbstractReferencesReviewsResources

Irreducible quadratic polynomials and Euler's function

Noah Lebowitz-Lockard

Published 2018-10-30Version 1

Let $P(x)$ be an irreducible quadratic polynomial in $\mathbb{Z}[x]$. We show that for almost all $n$, $P(n)$ does not lie in the range of Euler's totient function.

Comments: 18 pages
Categories: math.NT
Subjects: 11N37
Related articles: Most relevant | Search more
arXiv:1810.11524 [math.NT] (Published 2018-10-26)
Euler's Function on Products of Primes in Progressions
arXiv:1012.0080 [math.NT] (Published 2010-12-01)
On common values of $φ(n)$ and $σ(m)$, II
arXiv:1907.09847 [math.NT] (Published 2019-07-23)
Sparse subsets of the natural numbers and Euler's totient function