arXiv Analytics

Sign in

arXiv:1012.0080 [math.NT]AbstractReferencesReviewsResources

On common values of $φ(n)$ and $σ(m)$, II

Kevin Ford, Paul Pollack

Published 2010-12-01Version 1

Let phi(n) be Euler's totient function and let sigma(n) be the sum of the positive divisors of n. We show that most phi-values (integers in the range of phi) are not sigma-values and vice versa.

Comments: 23 pages
Journal: Algebra and Number Theory 6 (2012), no. 8, 1669-1696
Categories: math.NT
Subjects: 11N37, 11A25
Related articles: Most relevant | Search more
arXiv:1711.00180 [math.NT] (Published 2017-11-01)
Diophantine equations involving Euler's totient function
arXiv:2007.05771 [math.NT] (Published 2020-07-11)
Gaps between totients
arXiv:2002.12155 [math.NT] (Published 2020-02-27)
Solutions of $φ(n)=φ(n+k)$ and $σ(n)=σ(n+k)$