arXiv:1803.03377 [math.NT]AbstractReferencesReviewsResources
On the sum of the reciprocals of the differences between consecutive primes
Published 2018-03-09Version 1
Let $p_n$ denote the $n$-th prime number, and let $d_n=p_{n+1}-p_{n}$. Under the Hardy--Littlewood prime-pair conjecture, we prove \begin{align*} \sum_{n\le X}\frac{\log^{\alpha}d_n}{d_n}\sim\begin{cases} \quad\frac{X\log\log\log X}{\log X}~\qquad\quad~ &\alpha=-1, \frac{X}{\log X}\frac{(\log\log X)^{1+\alpha}}{1+\alpha}\qquad &\alpha>-1, \end{cases} \end{align*} and establish asymptotic properties for some series of $d_n$ without the Hardy--Littlewood prime-pair conjecture.
Comments: 5 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1805.04940 [math.NT] (Published 2018-05-13)
Negative moments of the gaps between consecutive primes
Consecutive primes in tuples
arXiv:1604.02443 [math.NT] (Published 2016-04-08)
On the last digits of consecutive primes