{ "id": "1803.03377", "version": "v1", "published": "2018-03-09T04:14:53.000Z", "updated": "2018-03-09T04:14:53.000Z", "title": "On the sum of the reciprocals of the differences between consecutive primes", "authors": [ "Nian Hong Zhou" ], "comment": "5 pages", "categories": [ "math.NT" ], "abstract": "Let $p_n$ denote the $n$-th prime number, and let $d_n=p_{n+1}-p_{n}$. Under the Hardy--Littlewood prime-pair conjecture, we prove \\begin{align*} \\sum_{n\\le X}\\frac{\\log^{\\alpha}d_n}{d_n}\\sim\\begin{cases} \\quad\\frac{X\\log\\log\\log X}{\\log X}~\\qquad\\quad~ &\\alpha=-1, \\frac{X}{\\log X}\\frac{(\\log\\log X)^{1+\\alpha}}{1+\\alpha}\\qquad &\\alpha>-1, \\end{cases} \\end{align*} and establish asymptotic properties for some series of $d_n$ without the Hardy--Littlewood prime-pair conjecture.", "revisions": [ { "version": "v1", "updated": "2018-03-09T04:14:53.000Z" } ], "analyses": { "subjects": [ "11N05", "11N36", "11A41" ], "keywords": [ "consecutive primes", "hardy-littlewood prime-pair conjecture", "differences", "reciprocals", "th prime number" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }