{ "id": "1704.06158", "version": "v1", "published": "2017-04-20T14:12:53.000Z", "updated": "2017-04-20T14:12:53.000Z", "title": "Extreme values of the Riemann zeta function and its argument", "authors": [ "Andriy Bondarenko", "Kristian Seip" ], "categories": [ "math.NT" ], "abstract": "We combine our version of the resonance method with certain convolution formulas for $\\zeta(s)$ and $\\log\\, \\zeta(s)$. This leads to a new $\\Omega$ result for $|\\zeta(1/2+it)|$: The maximum of $|\\zeta(1/2+it)|$ on the interval $1 \\le t \\le T$ is at least $\\exp\\left((1+o(1)) \\sqrt{\\log T \\log\\log\\log T/\\log\\log T}\\right)$. We also obtain conditional results for $S(t):=1/\\pi$ times the argument of $\\zeta(1/2+it)$ and $S_1(t):=\\int_0^t S(\\tau)d\\tau$. On the Riemann hypothesis, the maximum of $|S(t)|$ is at least $c \\sqrt{\\log T \\log\\log\\log T/\\log\\log T}$ and the maximum of $S_1(t)$ is at least $c_1 \\sqrt{\\log T \\log\\log\\log T/(\\log\\log T)^3}$ on the interval $T^{\\beta} \\le t \\le T$ whenever $0\\le \\beta < 1$.", "revisions": [ { "version": "v1", "updated": "2017-04-20T14:12:53.000Z" } ], "analyses": { "keywords": [ "riemann zeta function", "extreme values", "conditional results", "resonance method", "riemann hypothesis" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }