arXiv:1609.06184 [math.NT]AbstractReferencesReviewsResources
On the Riesz means of $δ_k(n)$
Published 2016-09-20Version 1
Let $k\geq 1$ be an integer. Let $\delta_k(n)$ denote the maximum divisor of $n$ which is co-prime to $k$. We study the error term of the general $m$-th Riesz mean of the arithmetical function $\delta_k(n)$ for any positive integer $m \ge 1$, namely the error term $E_m(x)$ where \[ \frac{1}{m!}\sum_{n \leq x}\delta_k(n) \left( 1-\frac{n}{x} \right)^m = M_{m, k}(x) + E_{m, k}(x). \] We establish a non-trivial upper bound for $\left | E_{m, k} (x) \right |$, for any integer $m\geq 1$.
Categories: math.NT
Related articles: Most relevant | Search more
The Error Term in the Sato-Tate Conjecture
arXiv:0808.1216 [math.NT] (Published 2008-08-08)
On the mean square of the error term for the two-dimensional divisor problems(II)
arXiv:0806.3902 [math.NT] (Published 2008-06-24)
On the mean square of the error term for the two-dimensional divisor problem (I)