{ "id": "1609.06184", "version": "v1", "published": "2016-09-20T14:04:49.000Z", "updated": "2016-09-20T14:04:49.000Z", "title": "On the Riesz means of $δ_k(n)$", "authors": [ "Saurabh Kumar Singh" ], "categories": [ "math.NT" ], "abstract": "Let $k\\geq 1$ be an integer. Let $\\delta_k(n)$ denote the maximum divisor of $n$ which is co-prime to $k$. We study the error term of the general $m$-th Riesz mean of the arithmetical function $\\delta_k(n)$ for any positive integer $m \\ge 1$, namely the error term $E_m(x)$ where \\[ \\frac{1}{m!}\\sum_{n \\leq x}\\delta_k(n) \\left( 1-\\frac{n}{x} \\right)^m = M_{m, k}(x) + E_{m, k}(x). \\] We establish a non-trivial upper bound for $\\left | E_{m, k} (x) \\right |$, for any integer $m\\geq 1$.", "revisions": [ { "version": "v1", "updated": "2016-09-20T14:04:49.000Z" } ], "analyses": { "keywords": [ "error term", "non-trivial upper bound", "th riesz mean", "maximum divisor", "positive integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }