arXiv Analytics

Sign in

arXiv:1510.00536 [math.NT]AbstractReferencesReviewsResources

Correlations between real conjugate algebraic numbers

Friedrich Götze, Dzianis Kaliada, Dmitry Zaporozhets

Published 2015-10-02Version 1

For $B\subset\mathbb{R}^k$ denote by $\Phi_k(Q;B)$ the number of ordered $k$-tuples in $B$ of real conjugate algebraic numbers of degree $\leq n$ and naive height $\leq Q$. We show that $$ \Phi_k(Q;B) = \frac{(2Q)^{n+1}}{2\zeta(n+1)} \int_{B} \rho_k(\mathbf{x})\,d\mathbf{x} + O\left(Q^n\right),\quad Q\to \infty, $$ where the function $\rho_k$ will be given explicitly. If $n=2$, then an additional factor $\log Q$ appears in the reminder term.

Related articles: Most relevant | Search more
arXiv:2102.12297 [math.NT] (Published 2021-02-24)
Correlations of Almost Primes
arXiv:2009.13497 [math.NT] (Published 2020-09-28)
Correlations of multiplicative functions in function fields
arXiv:2312.06012 [math.NT] (Published 2023-12-10)
On Correlations of Liouville-like Functions