arXiv Analytics

Sign in

arXiv:2312.06012 [math.NT]AbstractReferencesReviewsResources

On Correlations of Liouville-like Functions

Yichen You

Published 2023-12-10Version 1

Let $\mathcal{A}$ be a set of mutually coprime positive integers, satisfying \begin{align*} \sum\limits_{a\in\mathcal{A}}\frac{1}{a} = \infty. \end{align*} Define the (possibly non-multiplicative) "Liouville-like" functions \begin{align*} \lambda_{\mathcal{A}}(n) = (-1)^{\#\{a:a|n, a \in \mathcal{A}\}} \text{ or } (-1)^{\#\{a:a^\nu\parallel n, a \in \mathcal{A}, \nu \in \mathbb{N}\}}. \end{align*} We show that \begin{align*} \lim\limits_{x\to\infty}\frac{1}{x}\sum\limits_{n \leq x} \lambda_\mathcal{A}(n) = 0 \end{align*} holds, answering a question of de la Rue.

Comments: 9 pages, comments welcome
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2102.12297 [math.NT] (Published 2021-02-24)
Correlations of Almost Primes
arXiv:1709.06445 [math.NT] (Published 2017-09-18)
An elementary property of correlations
arXiv:1510.00536 [math.NT] (Published 2015-10-02)
Correlations between real conjugate algebraic numbers