arXiv Analytics

Sign in

arXiv:1506.08432 [quant-ph]AbstractReferencesReviewsResources

Advancing the case for $PT$ Symmetry -- the Hamiltonian is always $PT$ Symmetric

Philip D. Mannheim

Published 2015-06-28Version 1

While a Hamiltonian can be both Hermitian and $PT$ symmetric, it is $PT$ symmetry that is the more general, as it can lead to real energy eigenvalues even if the Hamiltonian is not Hermitian. We discuss some specific ways in which $PT$ symmetry goes beyond Hermiticity and is more far reaching than it. We show that simply by virtue of being the generator of time translations, the Hamiltonian must always be $PT$ symmetric, regardless of whether or not it might be Hermitian. We show that the reality of the Euclidean time path integral is a necessary and sufficient condition for $PT$ symmetry of a quantum field theory, with Hermiticity only being a sufficient condition. We show that in order to construct the correct classical action needed for a path integral quantization one must impose $PT$ symmetry on each classical path, a requirement that has no counterpart in any Hermiticity condition since Hermiticity of a Hamiltonian is only definable after the quantization has been performed and the quantum Hilbert space has been constructed. With the spacetime metric being $PT$ even we show that a covariant action must always be $PT$ symmetric. Unlike Hermiticity, $PT$ symmetry does not need to be postulated as it is derivable from Poincare invariance. Hermiticity is just a particular realization of $PT$ symmetry, one in which the eigenspectrum is real and complete.

Related articles: Most relevant | Search more
arXiv:1310.3562 [quant-ph] (Published 2013-10-14, updated 2013-12-06)
Adiabatic computing using 2-local Hamiltonians on a line
arXiv:quant-ph/0009046 (Published 2000-09-11, updated 2001-06-19)
On the connection between the radial momentum operator and the Hamiltonian in n dimensions
arXiv:1705.06767 [quant-ph] (Published 2017-05-18)
Comment on 'Comment on "Hamiltonian for the zeros of the Riemann zeta function" '