arXiv Analytics

Sign in

arXiv:1407.0636 [math.NT]AbstractReferencesReviewsResources

Super congruences involving Bernoulli and Euler polynomials

Zhi-Hong Sun

Published 2014-07-02, updated 2014-07-28Version 6

Let $p>3$ be a prime, and let $a$ be a rational p-adic integer. Let $\{B_n(x)\}$ and $\{E_n(x)\}$ denote the Bernoulli polynomials and Euler polynomials, respectively. In this paper we show that $$\sum_{k=0}^{p-1}\binom ak\binom{-1-a}k\equiv (-1)^{\langle a\rangle_p}+ p^2t(t+1)E_{p-3}(-a)\pmod{p^3}$$ and for $a\not\equiv -\frac 12\pmod p$, $$\sum_{k=0}^{p-1}\binom ak\binom{-1-a}k\frac 1{2k+1}\equiv \frac{1+2t}{1+2a} +p^2\frac{t(t+1)}{1+2a}B_{p-2}(-a)\pmod{p^3},$$ where $\langle a\rangle_p\in\{0,1,\ldots,p-1\}$ satisfying $a\equiv \langle a\rangle_p\pmod p$ and $t=(a-\langle a\rangle_p)/p$. Taking $a=-\frac 13,-\frac 14,-\frac 16$ in the above congruences we solve some conjectures of Z.W. Sun. In this paper we also establish congruences for $\sum_{k=0}^{p-1}k\binom ak\binom{-1-a}k,\ \sum_{k=0}^{p-1}\binom ak\binom{-1-a}k\frac 1{2k-1},\ \sum_{k=1}^{p-1}\frac 1k\binom ak\binom{-1-a}k\pmod{p^3}$ and $\sum_{k=1}^{p-1}\frac {(-1)^k}k\binom ak,\ \sum_{k=0}^{p-1}\binom ak(-2)^k\pmod{p^2}.$

Related articles: Most relevant | Search more
arXiv:1605.09179 [math.NT] (Published 2016-05-30)
New super congruences involving Bernoulli and Euler polynomials
arXiv:math/0408223 [math.NT] (Published 2004-08-17, updated 2004-08-20)
New identities involving Bernoulli and Euler polynomials. II
arXiv:0709.2593 [math.NT] (Published 2007-09-17)
Symmetric identities on Bernoulli polynomials