{ "id": "1407.0636", "version": "v6", "published": "2014-07-02T16:24:45.000Z", "updated": "2014-07-28T18:08:48.000Z", "title": "Super congruences involving Bernoulli and Euler polynomials", "authors": [ "Zhi-Hong Sun" ], "comment": "30 pages", "categories": [ "math.NT" ], "abstract": "Let $p>3$ be a prime, and let $a$ be a rational p-adic integer. Let $\\{B_n(x)\\}$ and $\\{E_n(x)\\}$ denote the Bernoulli polynomials and Euler polynomials, respectively. In this paper we show that $$\\sum_{k=0}^{p-1}\\binom ak\\binom{-1-a}k\\equiv (-1)^{\\langle a\\rangle_p}+ p^2t(t+1)E_{p-3}(-a)\\pmod{p^3}$$ and for $a\\not\\equiv -\\frac 12\\pmod p$, $$\\sum_{k=0}^{p-1}\\binom ak\\binom{-1-a}k\\frac 1{2k+1}\\equiv \\frac{1+2t}{1+2a} +p^2\\frac{t(t+1)}{1+2a}B_{p-2}(-a)\\pmod{p^3},$$ where $\\langle a\\rangle_p\\in\\{0,1,\\ldots,p-1\\}$ satisfying $a\\equiv \\langle a\\rangle_p\\pmod p$ and $t=(a-\\langle a\\rangle_p)/p$. Taking $a=-\\frac 13,-\\frac 14,-\\frac 16$ in the above congruences we solve some conjectures of Z.W. Sun. In this paper we also establish congruences for $\\sum_{k=0}^{p-1}k\\binom ak\\binom{-1-a}k,\\ \\sum_{k=0}^{p-1}\\binom ak\\binom{-1-a}k\\frac 1{2k-1},\\ \\sum_{k=1}^{p-1}\\frac 1k\\binom ak\\binom{-1-a}k\\pmod{p^3}$ and $\\sum_{k=1}^{p-1}\\frac {(-1)^k}k\\binom ak,\\ \\sum_{k=0}^{p-1}\\binom ak(-2)^k\\pmod{p^2}.$", "revisions": [ { "version": "v6", "updated": "2014-07-28T18:08:48.000Z" } ], "analyses": { "subjects": [ "11A07", "11B68", "05A19" ], "keywords": [ "euler polynomials", "super congruences", "rational p-adic integer", "bernoulli polynomials" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.0636S" } } }