arXiv Analytics

Sign in

arXiv:1312.7295 [math.NT]AbstractReferencesReviewsResources

An asymptotic formula for Goldbach's conjecture with monic polynomials in $\mathbb{Z}[θ][x]$

Abílio Lemos, Anderson L. A. Araujo

Published 2013-12-27, updated 2015-05-13Version 2

In this paper, we consider $D=\mathbb{Z}[\theta]$, where $$\theta= \sqrt{-k} \,\,\,\, \mbox{if}\;\;\;-k\not\equiv 1 \;(\mbox{mod}\;4)\,\,\,\,\mbox{or}\,\,\,\, \theta=\frac{\sqrt{-k}+1}{2} \,\,\,\, \mbox{if}\;\;\;-k\equiv 1 \;(\mbox{mod}\;4),$$ $k\geq 2$ is a squarefree integer, and we proved that the number $R(y)$ of representations of a monic polynomial $f(x)\in \mathbb{Z}[\theta][x]$, of degree $d\geq 1$, as a sum of two monic irreducible polynomials $g(x)$ and $h(x)$ in $\mathbb{Z}[\theta][x]$, with the coefficients of $g(x)$ and $h(x)$ bounded in complex modulus by $y$, is asymptotic to $(4y)^{2d-2}$.

Related articles: Most relevant | Search more
arXiv:1110.6864 [math.NT] (Published 2011-10-31)
Asymptotics for numbers of line segments and lines in a square grid
arXiv:math/0507259 [math.NT] (Published 2005-07-13)
Asymptotic formula for sum-free sets in abelian groups
arXiv:1310.2715 [math.NT] (Published 2013-10-10)
On the asymptotic formula of L'(1, χ)